A unified existence theorem for normal spanning trees

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Existence Criterion for Normal Spanning Trees

Halin proved in 1978 that there exists a normal spanning tree in every connected graph G that satisfies the following two conditions: (i) G contains no subdivision of a ‘fat’ Kא0 , one in which every edge has been replaced by uncountably many parallel edges; and (ii) G has no Kא0 subgraph. We show that the second condition is unnecessary.

متن کامل

A simple existence criterion for normal spanning trees in infinite graphs

A spanning tree of an infinite graph is normal if the endvertices of any chord are comparable in the tree order defined by some arbitrarily chosen root. (In finite graphs, these are their ‘depth-first search’ trees; see [3] for precise definitions.) Normal spanning trees are perhaps the most important single structural tool for analysing an infinite graph (see [4] for a good example), but they ...

متن کامل

A Polyhedral Intersection Theorem for Capacitated Spanning Trees

In a two-capacitated spanning tree of a complete graph with a distinguished root vertex v, every component of the induced subgraph on V\{v} has at most two vertices. We give a complete, non-redundant characterization of the polytope defined by the convex hull of the incidence vectors of two-capacitated spanning trees. This polytope is the intersection of the spanning tree polytope on the given ...

متن کامل

A Unified Existence and Uniqueness Theorem for Stochastic Evolution Equations

An existence and uniqueness theorem for mild solutions of stochastic evolution equations is presented and proved. The diffusion coefficient is handled in a unified way which allows a unified theorem to be formulated for different cases, in particular, of multiplicative space–time white noise and trace-class noise. 2000 Mathematics subject classification: primary 60H15; secondary 35K90.

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2020

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2020.07.002